High salt promotes autoimmunity by TET2-induced DNA demethylation and driving the differentiation of Tfh cells
نویسندگان
چکیده
Follicular helper T cells (Tfh) have been well documented to play a critical role in autoimmunity, such as systemic lupus erythematosus (SLE), by helping B cells. In this study, high salt (sodium chloride, NaCl), under physiological conditions, was demonstrated to increase the differentiation of Tfh. A high-salt diet markedly increased lupus features in MRL/lpr mice. The mechanism is NaCl-induced DNA demethylation via the recruitment of the hydroxytransferase Ten-Eleven Translocation 2 (TET2). Gene silencing of TET2 obviously diminished NaCl-induced Tfh cell polarization in vitro. In addition, the gene expression of sh2d1a, map3k1, spn and stat5b was enhanced after NaCl treatment, consistent with the findings in lupus CD4(+)T cells. However, only spn was directly regulated by TET2, and spn was not the sole target for NaCl. Our findings not only explain the epigenetic mechanisms of high-salt induced autoimmunity but also provide an attractive molecular target for intervention strategies of patients.
منابع مشابه
TET2 Inhibits Differentiation of Embryonic Stem Cells but Does Not Overcome Methylation-Induced Gene Silencing
TET2 is a methylcytosine dioxygenase that is frequently mutated in myeloid malignancies, notably myelodysplasia and acute myeloid leukemia. TET2 catalyses the conversion of 5'-methylcytosine to 5'-hydroxymethylcytosine within DNA and has been implicated in the process of genomic demethylation. However, the mechanism by which TET2 loss of function results in hematopoietic dysplasia and leukemoge...
متن کاملStage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells.
Primordial germ cells (PGCs) undergo dramatic rearrangements to their methylome during embryogenesis, including initial genome-wide DNA demethylation that establishes the germline epigenetic ground state. The role of the 5-methylcytosine (5mC) dioxygenases Tet1 and Tet2 in the initial genome-wide DNA demethylation process has not been examined directly. Using PGCs differentiated from either con...
متن کاملCapicua deficiency induces autoimmunity and promotes follicular helper T cell differentiation via derepression of ETV5
High-affinity antibody production through the germinal centre (GC) response is a pivotal process in adaptive immunity. Abnormal development of follicular helper T (TFH) cells can induce the GC response to self-antigens, subsequently leading to autoimmunity. Here we show the transcriptional repressor Capicua/CIC maintains peripheral immune tolerance by suppressing aberrant activation of adaptive...
متن کاملTen-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro
Muscle cell differentiation is a complex process that is principally governed by related myogenic regulatory factors (MRFs). DNA methylation is considered to play an important role on the expression of MRF genes and on muscle cell differentiation. However, the roles of enzymes specifically in myogenesis are not fully understood. Here, we demonstrate that Tet2, a ten-eleven translocation (Tet) m...
متن کاملAid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells.
Recent studies have reported that activation-induced cytidine deaminase (AID) and ten-eleven-translocation (TET) family members regulate active DNA demethylation. Genetic alterations of TET2 occur in myeloid malignancies, and hematopoietic-specific loss of Tet2 induces aberrant hematopoietic stem cell (HSC) self-renewal/differentiation, implicating TET2 as a master regulator of normal and malig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016